Extensions 1→N→G→Q→1 with N=C2xDic5 and Q=C22

Direct product G=NxQ with N=C2xDic5 and Q=C22
dρLabelID
C23xDic5160C2^3xDic5160,226

Semidirect products G=N:Q with N=C2xDic5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xDic5):1C22 = C22:D20φ: C22/C1C22 ⊆ Out C2xDic540(C2xDic5):1C2^2160,103
(C2xDic5):2C22 = C23:D10φ: C22/C1C22 ⊆ Out C2xDic540(C2xDic5):2C2^2160,158
(C2xDic5):3C22 = C24:2D5φ: C22/C1C22 ⊆ Out C2xDic540(C2xDic5):3C2^2160,174
(C2xDic5):4C22 = D4:6D10φ: C22/C1C22 ⊆ Out C2xDic5404(C2xDic5):4C2^2160,219
(C2xDic5):5C22 = D5xC22:C4φ: C22/C2C2 ⊆ Out C2xDic540(C2xDic5):5C2^2160,101
(C2xDic5):6C22 = C2xD10:C4φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5):6C2^2160,148
(C2xDic5):7C22 = C2xC23.D5φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5):7C2^2160,173
(C2xDic5):8C22 = C2xD4xD5φ: C22/C2C2 ⊆ Out C2xDic540(C2xDic5):8C2^2160,217
(C2xDic5):9C22 = C2xD4:2D5φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5):9C2^2160,218
(C2xDic5):10C22 = D5xC4oD4φ: C22/C2C2 ⊆ Out C2xDic5404(C2xDic5):10C2^2160,223
(C2xDic5):11C22 = C22xC5:D4φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5):11C2^2160,227
(C2xDic5):12C22 = D5xC22xC4φ: trivial image80(C2xDic5):12C2^2160,214

Non-split extensions G=N.Q with N=C2xDic5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C2xDic5).1C22 = C20:2Q8φ: C22/C1C22 ⊆ Out C2xDic5160(C2xDic5).1C2^2160,90
(C2xDic5).2C22 = C20.6Q8φ: C22/C1C22 ⊆ Out C2xDic5160(C2xDic5).2C2^2160,91
(C2xDic5).3C22 = C4.D20φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).3C2^2160,96
(C2xDic5).4C22 = C42:2D5φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).4C2^2160,97
(C2xDic5).5C22 = Dic5.14D4φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).5C2^2160,99
(C2xDic5).6C22 = D10.12D4φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).6C2^2160,104
(C2xDic5).7C22 = D10:D4φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).7C2^2160,105
(C2xDic5).8C22 = C20:Q8φ: C22/C1C22 ⊆ Out C2xDic5160(C2xDic5).8C2^2160,109
(C2xDic5).9C22 = Dic5.Q8φ: C22/C1C22 ⊆ Out C2xDic5160(C2xDic5).9C2^2160,110
(C2xDic5).10C22 = C4.Dic10φ: C22/C1C22 ⊆ Out C2xDic5160(C2xDic5).10C2^2160,111
(C2xDic5).11C22 = D10.13D4φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).11C2^2160,115
(C2xDic5).12C22 = D10:Q8φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).12C2^2160,117
(C2xDic5).13C22 = D10:2Q8φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).13C2^2160,118
(C2xDic5).14C22 = C20.48D4φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).14C2^2160,145
(C2xDic5).15C22 = C23.23D10φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).15C2^2160,150
(C2xDic5).16C22 = C20:7D4φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).16C2^2160,151
(C2xDic5).17C22 = C23.18D10φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).17C2^2160,156
(C2xDic5).18C22 = C20.17D4φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).18C2^2160,157
(C2xDic5).19C22 = C20:2D4φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).19C2^2160,159
(C2xDic5).20C22 = Dic5:Q8φ: C22/C1C22 ⊆ Out C2xDic5160(C2xDic5).20C2^2160,165
(C2xDic5).21C22 = D10:3Q8φ: C22/C1C22 ⊆ Out C2xDic580(C2xDic5).21C2^2160,167
(C2xDic5).22C22 = D4.10D10φ: C22/C1C22 ⊆ Out C2xDic5804-(C2xDic5).22C2^2160,225
(C2xDic5).23C22 = Dic5.D4φ: C22/C1C22 ⊆ Out C2xDic5804-(C2xDic5).23C2^2160,80
(C2xDic5).24C22 = C23.F5φ: C22/C1C22 ⊆ Out C2xDic5404(C2xDic5).24C2^2160,88
(C2xDic5).25C22 = D4.F5φ: C22/C1C22 ⊆ Out C2xDic5808-(C2xDic5).25C2^2160,206
(C2xDic5).26C22 = C4xDic10φ: C22/C2C2 ⊆ Out C2xDic5160(C2xDic5).26C2^2160,89
(C2xDic5).27C22 = C42:D5φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).27C2^2160,93
(C2xDic5).28C22 = C4xD20φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).28C2^2160,94
(C2xDic5).29C22 = C23.D10φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).29C2^2160,100
(C2xDic5).30C22 = Dic5.5D4φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).30C2^2160,106
(C2xDic5).31C22 = C22.D20φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).31C2^2160,107
(C2xDic5).32C22 = D5xC4:C4φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).32C2^2160,112
(C2xDic5).33C22 = C4:C4:7D5φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).33C2^2160,113
(C2xDic5).34C22 = C4:D20φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).34C2^2160,116
(C2xDic5).35C22 = C4:C4:D5φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).35C2^2160,119
(C2xDic5).36C22 = C2xC10.D4φ: C22/C2C2 ⊆ Out C2xDic5160(C2xDic5).36C2^2160,144
(C2xDic5).37C22 = C2xC4:Dic5φ: C22/C2C2 ⊆ Out C2xDic5160(C2xDic5).37C2^2160,146
(C2xDic5).38C22 = C23.21D10φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).38C2^2160,147
(C2xDic5).39C22 = C4xC5:D4φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).39C2^2160,149
(C2xDic5).40C22 = D4xDic5φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).40C2^2160,155
(C2xDic5).41C22 = Dic5:D4φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).41C2^2160,160
(C2xDic5).42C22 = C20:D4φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).42C2^2160,161
(C2xDic5).43C22 = Q8xDic5φ: C22/C2C2 ⊆ Out C2xDic5160(C2xDic5).43C2^2160,166
(C2xDic5).44C22 = C20.23D4φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).44C2^2160,168
(C2xDic5).45C22 = C22xDic10φ: C22/C2C2 ⊆ Out C2xDic5160(C2xDic5).45C2^2160,213
(C2xDic5).46C22 = C2xC4oD20φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).46C2^2160,216
(C2xDic5).47C22 = C2xQ8xD5φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).47C2^2160,220
(C2xDic5).48C22 = C4xC5:C8φ: C22/C2C2 ⊆ Out C2xDic5160(C2xDic5).48C2^2160,75
(C2xDic5).49C22 = C20:C8φ: C22/C2C2 ⊆ Out C2xDic5160(C2xDic5).49C2^2160,76
(C2xDic5).50C22 = C10.C42φ: C22/C2C2 ⊆ Out C2xDic5160(C2xDic5).50C2^2160,77
(C2xDic5).51C22 = D10:C8φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).51C2^2160,78
(C2xDic5).52C22 = Dic5:C8φ: C22/C2C2 ⊆ Out C2xDic5160(C2xDic5).52C2^2160,79
(C2xDic5).53C22 = C23.2F5φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).53C2^2160,87
(C2xDic5).54C22 = C2xD5:C8φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).54C2^2160,200
(C2xDic5).55C22 = C2xC4.F5φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).55C2^2160,201
(C2xDic5).56C22 = D5:M4(2)φ: C22/C2C2 ⊆ Out C2xDic5404(C2xDic5).56C2^2160,202
(C2xDic5).57C22 = C22xC5:C8φ: C22/C2C2 ⊆ Out C2xDic5160(C2xDic5).57C2^2160,210
(C2xDic5).58C22 = C2xC22.F5φ: C22/C2C2 ⊆ Out C2xDic580(C2xDic5).58C2^2160,211
(C2xDic5).59C22 = D5xC42φ: trivial image80(C2xDic5).59C2^2160,92
(C2xDic5).60C22 = C23.11D10φ: trivial image80(C2xDic5).60C2^2160,98
(C2xDic5).61C22 = Dic5:4D4φ: trivial image80(C2xDic5).61C2^2160,102
(C2xDic5).62C22 = Dic5:3Q8φ: trivial image160(C2xDic5).62C2^2160,108
(C2xDic5).63C22 = D20:8C4φ: trivial image80(C2xDic5).63C2^2160,114
(C2xDic5).64C22 = C2xC4xDic5φ: trivial image160(C2xDic5).64C2^2160,143
(C2xDic5).65C22 = C2xQ8:2D5φ: trivial image80(C2xDic5).65C2^2160,221

׿
x
:
Z
F
o
wr
Q
<